

LhARA the facility for radiobiological research with an FFA in its heart

J. Pasternak, on behalf of LhARA Collaboration

01/12/2020, FFA'20 Workshop

Outline

- Introduction and motivation
- Laser source
- Gabor lens
- Stage 1 baseline
- Stage 1 alternative
- FFA post-accelerator
- Stage 2 injection
- Optics for Stage 2 end stations
- R&D needs
- Conclusions

Introduction

- Laser hybrid Accelerator for Radiobiological Applications (LhARA) was proposed within the Centre for the Clinical Application of Particles (CCAP) at Imperial College London as a facility dedicated to the systematic study of radiobiology.
- It will allow study with proton beams with a flexible dose delivery (including a novel FLASH regime) at Stage 1
- It will open the study to use multiple ions (including Carbon) at Stage2 for both in-vitro and in-vivo end stations.
- It aims to demonstrate a novel technologies for next generation hadrontherapy.

Who are we?

Review and publications

- LhARA team performed an intensive design work culminated by the international review last March ٠
 - A very positive feedback was received
 - Pre-CDR was completed •
- Recent work was summarised in the article published in Frontiers in Physics ۲

July 12, 2020	Final—revision 2	CCAP-TN-01	frontiers in Physics	ORIGINAL RESEARC published: 29 September 20 doi: 10.3389/fphy.2020.5677
Laser-hybrid	Accelerator for Radiobiologica	al Applications		Check

(LhARA)

Conceptual Design Report

The LhARA collaboration

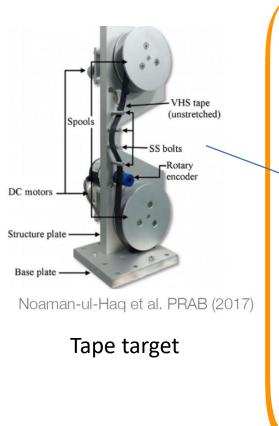
G. Aymar¹, T. Becker², S. Boogert³, M. Borghesi⁴, R. Bingham^{5,1}, C. Brenner¹, P.N. Burrows⁶, T. Dascalu⁷, O.C. Ettlinger⁸, S. Gibson³, T. Greenshaw⁹, S. Gruber¹⁰, D. Gujral¹¹, C. Hardiman¹¹, J. Hughes⁹, W.G. Jones^{7,20}, K. Kirkby¹², A. Kurup⁷, J-B. Lagrange¹, K. Long^{7,1}, W. Luk⁷, J. Matheson¹, P. McKenna^{5,14}, R. Mclauchlan¹¹, Z. Najmudin⁸, H.T. Lau⁷, J.L. Parsons^{9,21}, J. Pasternak^{7,1}, J. Pozimski^{7,1}, K. Prise⁴, M. Puchalska¹³, P. Ratoff¹⁴, G. Schettino^{15,19}, W. Shields³, S. Smith¹⁶, J. Thomason¹, S. Towe¹⁷, P. Weightman⁹, C. Whyte^{5,14}, R. Xiao¹⁸

https://ccap.hep.ph.ic.ac.uk/trac/rawattachment/wiki/Communication/Notes/CCAP-TN-01.pdf

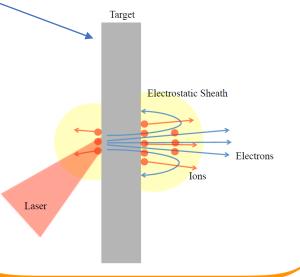
LhARA: The Laser-hybrid Accelerator for Radiobiological Applications

Galen Aymar¹, Tobias Becker², Stewart Boogert³, Marco Borghesi⁴, Robert Bingham^{1,5} Ceri Brenner¹, Philip N. Burrows⁶, Oliver C. Ettlinger⁷, Titus Dascalu⁸, Stephen Gibson³, Timothy Greenshaw⁹, Sylvia Gruber¹⁰, Dorothy Gujral¹¹, Claire Hardiman¹¹, Jonathan Hughes⁹, W. G. Jones^{8,12}, Karen Kirkby¹³, Ajit Kurup^{8*}, Jean-Baptiste Lagrange¹, Kenneth Long^{1,8}, Wayne Luk⁸, John Matheson¹, Paul McKenna^{5,14}, Ruth McLauchlan¹¹, Zulfikar Najmudin⁷, Hin T. Lau⁸, Jason L. Parsons^{15,16}, Jaroslaw Pasternak^{1,8}, Juergen Pozimski^{1,8}, Kevin Prise¹⁷, Monika Puchalska¹⁸, Peter Ratoff^{14,19}, Giuseppe Schettino^{20,21}, William Shields³, Susan Smith²², John Thomason¹, Stephen Towe²³, Peter Weightman⁸, Colin Whyte⁵ and Rachel Xiao²⁴

OPEN ACCESS


Frontiers in Physics | www.frontiersin.org

September 2020 | Volume 8 | Article 567738





Many acceleration methodologies, but most studied and best characterised is sheath acceleration

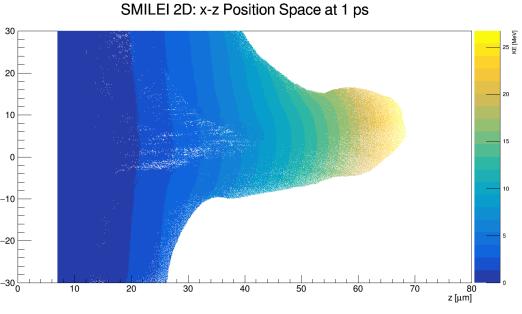
15MeV energies for LhARA injection achievable as part of thermal particle distribution

From O. Ettlinger

Initial Beam from the Laser Source

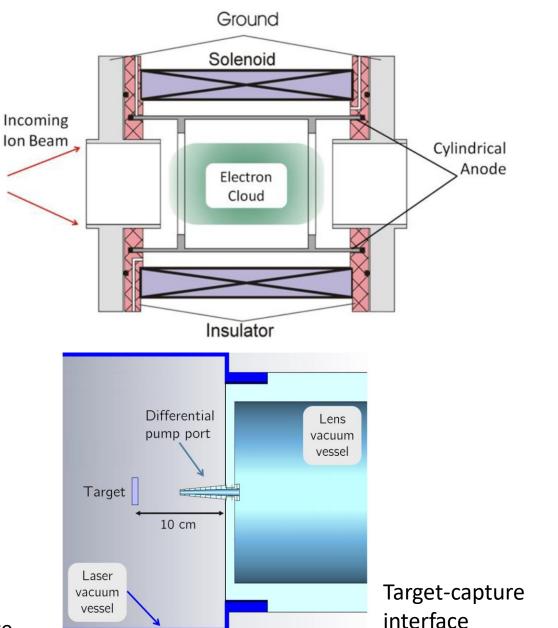
- Small emittance (~4.1x10⁻⁷ π.m.rad)
- Huge energy spread
- Very small beam size
- Very large divergence
- Neutral at the beginning then space charge dominated
- Mixture of states

LASER SOURCE


LASER

Positive ions from hydrocarbon contamination on the target surface

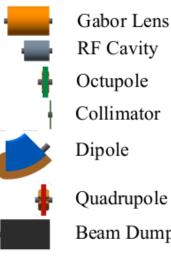
([mm]


Electron sheath generated by the laser accelerates positive ions from the target

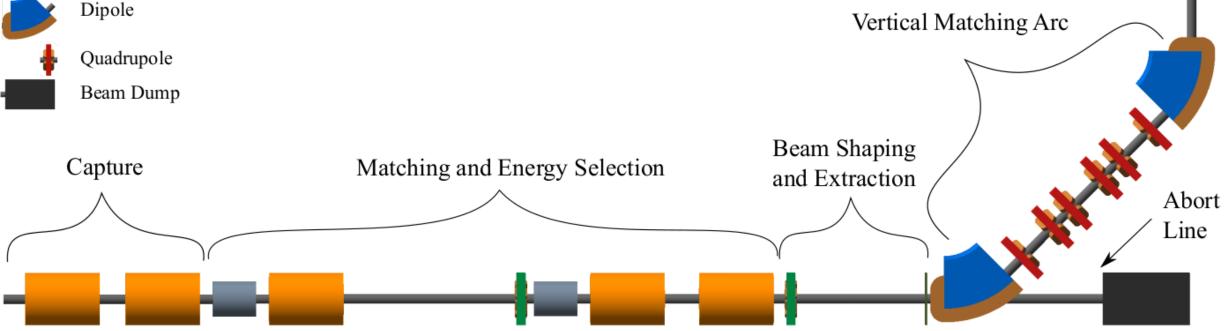
Produces intense beams and multiple species, e.g. proton and carbon ions.

Results obtained using SMILEI PIC code: J. Derouillat et al., <u>Comput. Phys. Commun. 222, 351-373 (2018)</u>,

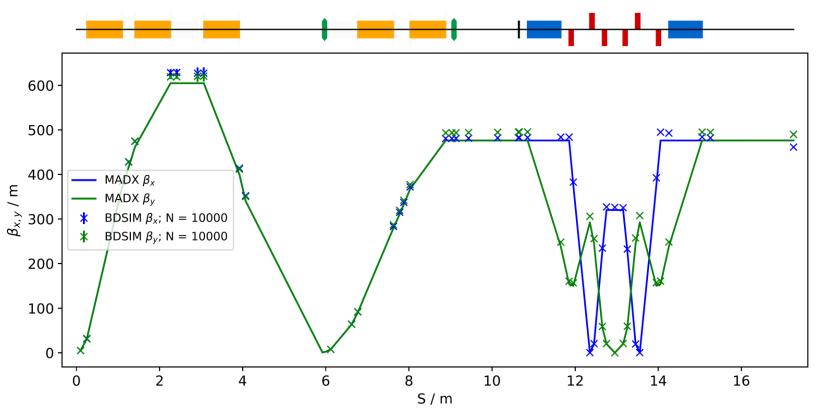
- Gabor Lenses for strong focusing
- Focus in both planes simultaneously, strength is energy dependent
 - Cost effective solution compared to SC solenoids
- Chosen as a baseline solution for the capture system and focusing in Stage 1
- Design based on Penning-Malmberg trap
- Require high vacuum to operate
- Subject to intensive 3D PIC simulation effort to inform a stable solution (to mitigate diocotron instability)
- Can be replaced by solenoids, if needed.



Science & Technology Facilities Council


ISIS

LhARA Stage 1, baseline lattice


- Energy selection by using a collimator between GL3 and GL4
- Combined with momentum selection collimator in the arc will produce PID selection
- RF cavities to manipulate the energy spread of the accepted beam and the bunch duration

LhARA Stage 1, optics

- Initial beam assumed neutral first (5cm) and then space charge must be taken into account
- Strong focusing in both planes by Gabor Lenses (or solenoids) essential in the capture section
- Matching to very small spot size unavoidable and used for the energy selection
- Matching with two lenses to the optically transparent, achromatic arc
- Redistribution of phase space using octupoles to create an uniform beam

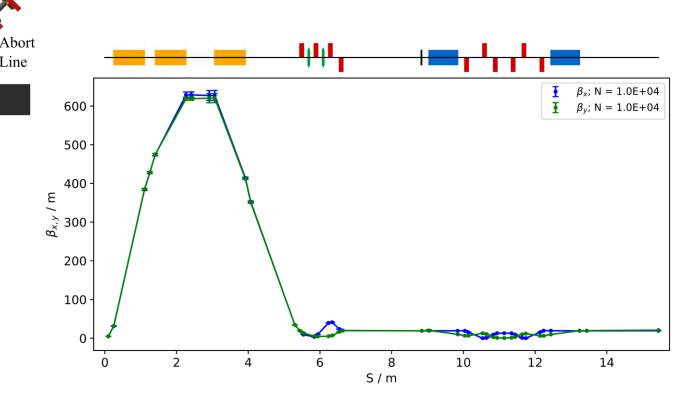
Achromatic vertical arc

Imperial College London Lhara Stage 1, alternative design

Vertical Matching Arc

Beam Shaping

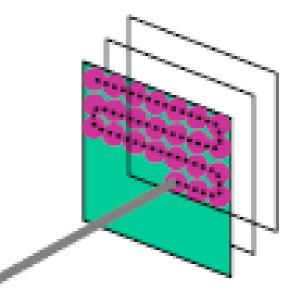
and Extraction

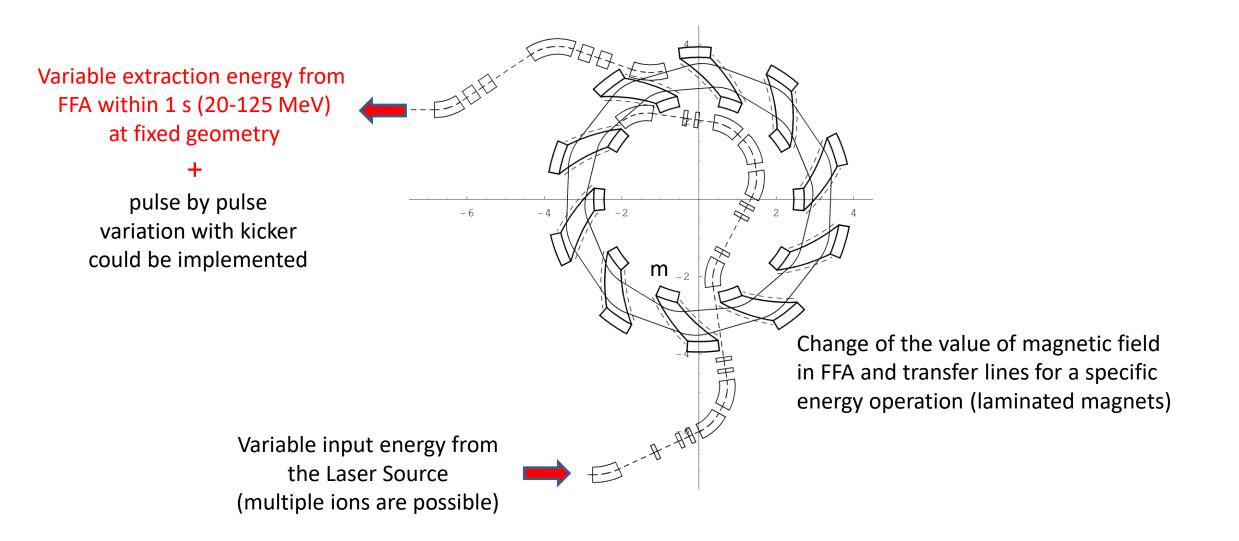

- Alternative design uses quadrupoles to avoid focusing to the spot in both planes simultaneously (a space charge mitigation)
- Octupoles would be in the right optical locations

Matching and

Energy Selection

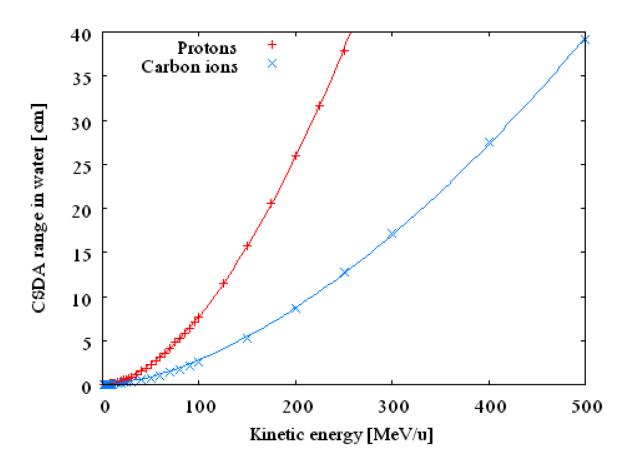
Capture


• Optics optimisation with the space charge to be done and the performance to be demonstrated


Motivations for a Medical/Radiobiological FFA (Fixed Field Accelerator)

Advantages of FFA for medical/radiobiological applications:

- High/variable dose delivery (high rep rate 10-100 Hz)
- Variable energy operation without enegy degraders
- Compact size and low cost
- Simple and efficient extraction
- Stable and easy operation
- Multiple extraction ports
- Bunch to Pixel active scanning possible.
- Multiple ion capability


Energy Variability using Laser Accelerated Ions

Energy for LhARA Stage 2

- FFA accelerator can typically accelerate by a factor of 3 in momentum (or more). This allows to easily achieve 127.4 MeV (starting from 15 MeV).
 - Acceleration by a factor of 4 could be possible
- This would correspond to 33.4 MeV/u for C6+.

LhARA Ring Parameters

- N
- k
- Spiral angle
- R_{max}
- $\mathsf{R}_{\mathsf{min}}$
- (Qx, Qy)
- B_{max}
- p_f
- Max Proton injection energy
- Max Proton extraction energy 127.4 MeV
- h
- RF frequency

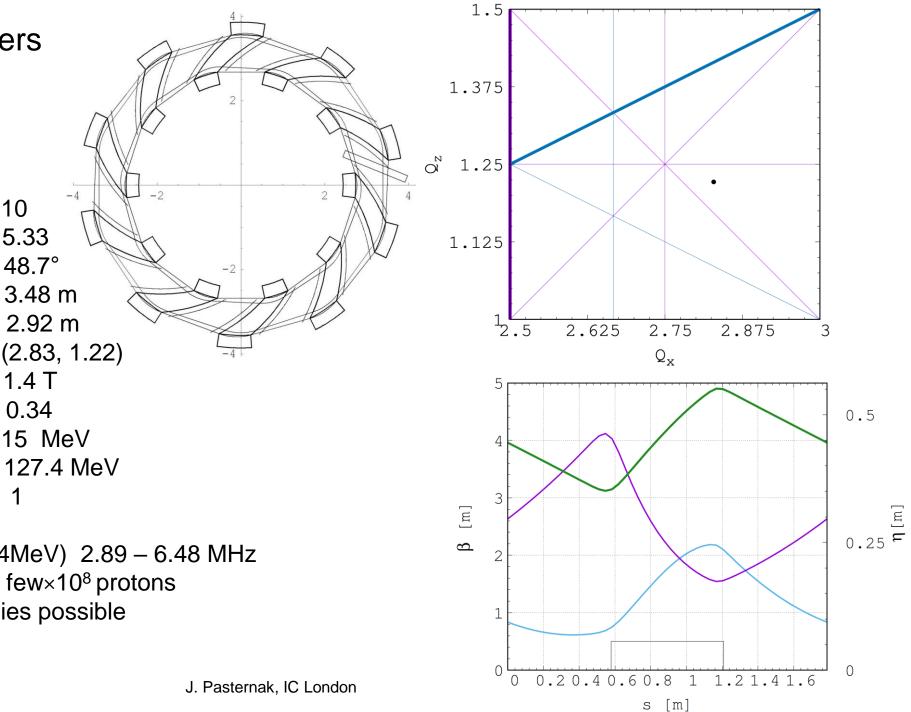
for proton acceleration (15-127.4MeV) 2.89 – 6.48 MHz

10

5.33

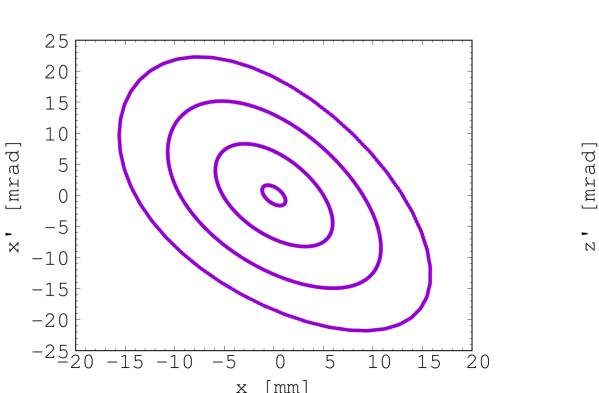
48.7°

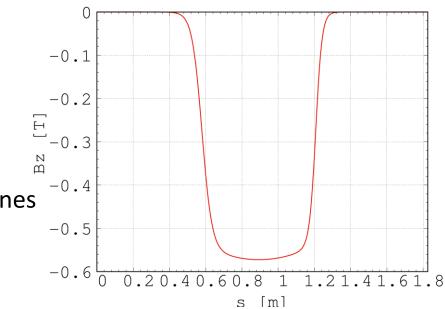
3.48 m

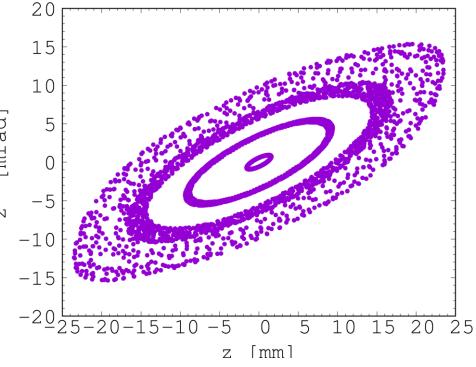

2.92 m

1.4 T

0.34

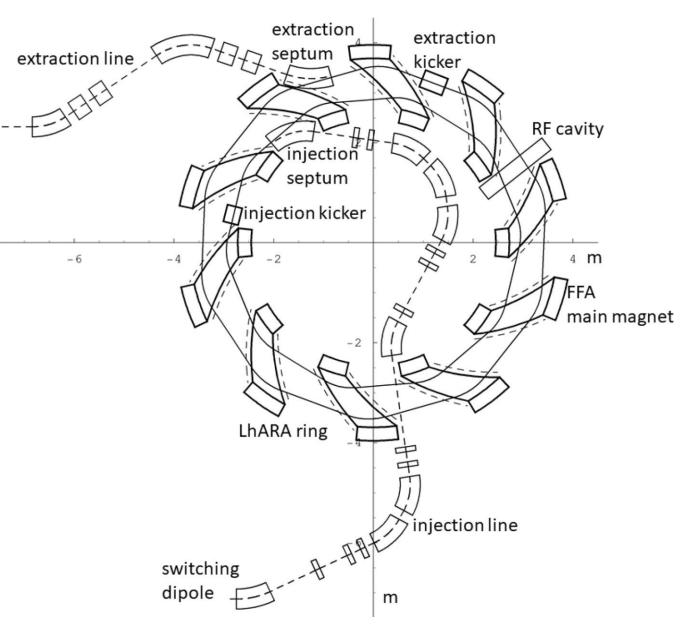

15 MeV

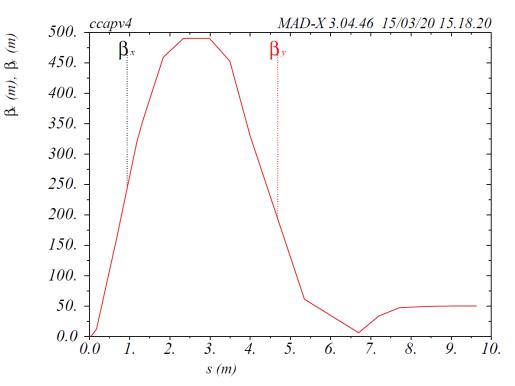

- few×10⁸ protons • Bunch intensity
- Range of other extraction energies possible
- Other ions also possible

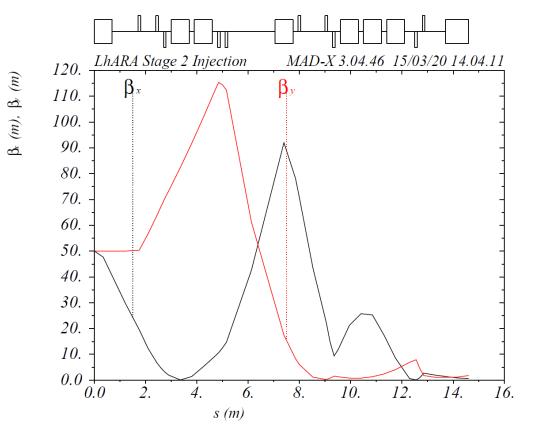


LhARA Ring Tracking

- Performed using proven stepwise tracking code
- It takes into account fringe fields and non-linear field components
- Results show dynamical acceptances are much larger than physical ones
- No space charge effects included yet
- Tracking performed using FixField code

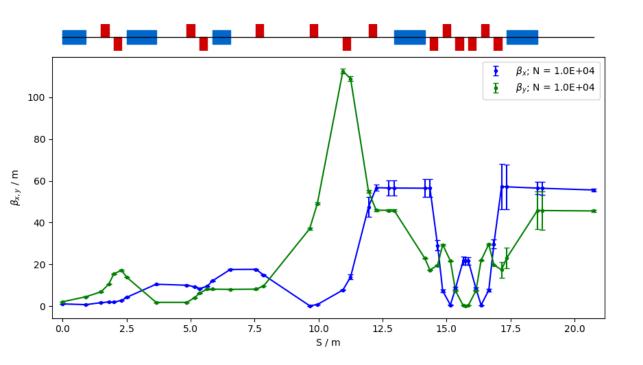



FFA Ring with subsystems

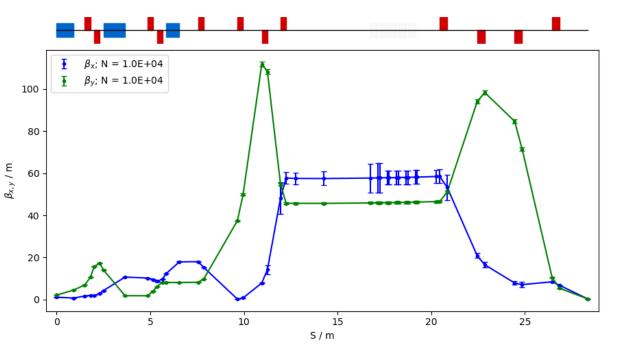

Parameter	unit	value
Injection septum:		
nominal magnetic field	Т	0.53
magnetic length	m	0.9
deflection angle	degrees	48.7
thickness	cm	1
full gap	cm	3
pulsing rate	Hz	10
Extraction septum:		
nominal magnetic field	Т	1.12
magnetic length	m	0.9
deflection angle	degrees	34.38
thickness	cm	1
full gap	cm	2
pulsing rate	Hz	10
Injection kicker:		
magnetic length	m	0.42
magnetic field at the flat top	Т	0.05
deflection angle	mrad	37.4
fall time	ns	320
flat top duration	ns	25
full gap	cm	3
Extraction kicker:		
magnetic length	m	0.65
magnetic field at the flat top	Т	0.05
deflection angle	mrad	19.3
rise time	ns	110
	1	10
flat top duration	ns	40

Injection optics

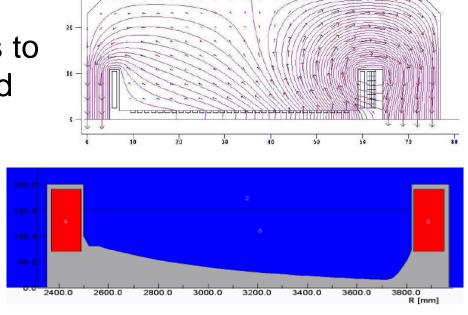
- Stage 1 can be tuned to match the injection line
- Focus point changes location and requires a dedicated collimation system
- Focusing can be realised with normal conducting solenoids



Optics from the switching dipole to the injection septum has been designed


Science & Technology Facilities Council

Extraction optics


Optics for Stage 2 in-vitro end station, the arc optics scaled from the Stage 1

Optics for Stage 2 in-vivo end station, a dedicated final focus has been designed

Essential R&D

Magnet types to be considered

- For LhARA magnet with parallel gap with distributed windings (but a single current) would be of choice with gap controlled by clamp. Concepts like an active clamp could be of interest too.
- Another important aspect of the R&D is the technology transfer for Magnetic Alloy (MA) loaded RF cavities for the ring

Magnet with distributed conductors:

- Parallel gap vertical tune more stable,
- Flexible field and k adjustment,

"Gap shaping" magnet:

- •Developed by SIGMAPHI for RACCAM project
- Initialy thought as more difficult

•Behaves very well

•Chosen for the RACCAM prototype construction

Layout of the full LhARA facility

Conclusions

- Conceptual design of LhARA is in a very good shape:
 - Stage 1 design is compact and flexible, and performs very well even including the space charge effects
 - LhARA at Stage 2 can use FFA-type ring as a post-accelerator enabling variable energy beams of various types of ions. The cost effective, spiral scaling FFA shows a good performance in tracking studies.
 - Feasible ring injection, extraction and beam transport to the end stations at Stage 2 have been designed.
- Essential R&D items:
 - Gabor lens
 - the main FFA magnet, and
 - the RF system for the ring