% TRIUMF

DESIGN OF AN INNOVATIVE SUPERCONDUCTING CYCLOTRON FOR COMMERCIAL ISOTOPES PRODUCTION

Yi-Nong Rao

On behalf of R. Baartman, Y. Bylinski, T. Planche, L.G. Zhang

Dec. 3, 2020

ccelerated

Outline

- Motivation
- Major machine parameters
- Conceptual design output
- Challenges
- Look forward

Existing Medical Cyclotrons

There are two main types of commercial medical cyclotrons:

for medical isotope production

- high current (0.05–1 mA)
- Iow-to-medium energy (7–70 MeV)
- H⁻ machines
- for proton therapy
 - •low-current ($1 \le \mu A$)
 - high-energy (200–400 MeV)
 - proton machines

PET Cyclotrons

Well established:

- IBA: Cyclone 18/9
- ■ACSI: TR19 => TR24
- GE: PETtrace
- Siemens: Eclipse
- Sumitomo: CYPRIS

Newcomers:

- BEST Cyclotrons
- CIAE: CYCIAE-14
- Compact SC cyclotrons (table-top "coffee makers")

PT Cyclotrons

Established:

- VARIAN(Germany): ProBeam-250 MeV
- IBA (Belgium): S2C2
- Sumitomo (Japan): P235
- Mevion (USA): S250

Newcomers:

- CIAE (China): CYCIAE-230
- ASIPP, Hefei (China) + Dubna (Russia): SC200 (SC230)

Medical Interest in 100+ MeV Protons

- Ac-225 and Bi-213 : main drivers of radiopharmaceutical developments for treatment of cancers (Melanoma, Prostate and Pancreatic)
- Sr-82 : PET agent in myocardial perfusion imaging
- At-211 and Ra-223 : proven commercial demand
- Ra-224, Pb-212 and Bi-212 : research interest

Cyclotrons in 100 MeV Niche

70–100 MeV range has just taken off the ground:

- IBA 70 MeV family
- Best Cyclotrons 70P
- CYCIAE-100 (Beijing China)
- ■All are H⁻ machines.
- Beam losses due to the electromagnetic stripping is a dominant intensity limiting factor.
- Low magnetic field and large magnet size is a compromise to control beam losses at high intensity.

Direction to Alternative Solution

To be efficient and economically attractive:

- Keep machine size small ==> high magnetic field
- Reduce operating costs ==> superconducting coil

Possible way to go:

• Drop out H⁻ option ==> switch to H_2^+

- solve electromagnetic stripping issue (higher binding energy)
- preserve stripping extraction benefits
- no need for separated turns
- preserve large phase acceptance
- Side benefit of S/C magnet: high magnetic field reproducibility and linearity because of iron saturation

TR100+ Main Parameters

Parameters	Value
Particle accelerated	H_2^+
Injection energy (keV)	34.7
Extraction energy (MeV/n)	100-150
Beam intensity (µA)	800
Number of sectors	4
Bo at centre (T)	2.0
Pole radius (m)	1.65
Injection scheme	Axial + external ion source
Extraction	p by stripping extraction
Coils	2 superconducting coils
Number of RF cavities	2
RF harmonic number	4
RF frequency (MHz)	61
Dee voltage (kV)	69 – 110

OPERA Magnetic Field Model

Parameters	Value
Hill gap (cm)	4.5
Pole radius (cm)	165
Sector azimuthal width (deg)	40 – 46
Sector spiral angle (deg)	20 – 70
Mean magnetic field (T)	2.0 – 2.3
Max. magnetic field (T)	2.5
Max. current density (A/mm²)	30

Magnetic Flux Density, Extraction Trajectories

Isochronism & Phase History

The isochronism parameter is within $\pm 5 \times 10^{-4}$ over the entire energy range except for the centre region and the extraction region. The rf phase excursion starys within $\pm 44^{\circ}$ for a peak energy gain of 0.4 MeV/turn.

Tune diagram

Coupling resonance $v_r - v_z = 1$ is avoided.

Half-integer resonance $2v_z = 1$ occurs at ~147.2 MeV/n

Centre Region Orbits

Beam Size at Extraction

Simulation of beam envelope along extraction trajectory Circulating emittance: 0.54π mm.mrad (4rms, normalized)

Axial beam size (orange), Radial beam size (blue), Magnetic field strength (green).

Magnetic channel is needed to pass through the fringe field.

Intensity Limitation

In both H_2^+ and H^- compact cyclotrons the space charge effects are strongest at the first turns. The intensity limit is driven by:

- vertical space charge tune shift
- Iongitudinal space charge effect

TR30 demonstrated an upper limit of \sim 1.0 mA (with 5 mA injected dc beam).

For TR100+, current intensity limit scales to ~800 μA of extracted protons.

Beam Losses Constraints

Two predominant types of beam loss in TR100+:

- electromagnetic dissociation
- Interactions with residual gas
- H₂⁺ has binding energy of last electron of 2.75 eV, ~3.6 times larger than in H⁻ case. Unfortunately, the lowest electronic state of H₂⁺ has 19 bound vibrational states. Ions in a vibrational state above 16 will dissociate during acceleration in the proposed configuration: ~1% of the beam could be lost.
- Vacuum has to be better than 1.0 × 10⁻⁷ Torr to maintain beam loss due to residual gas stripping below 1.0%.

Look Forward

Only preliminary conceptual consideration has taken place so far. Next steps in the design effort:

- Injection line and center region optimization
- Sector's spiral shape optimizations for better vertical focusing
- Design of rf cavities to operate at high voltage and high power
- Exploration of vibrational states suppression in the ion source
- Superconducting coils design
- Full scale project necessities:
 - Converge on requirements/specifications
 - Develop realistic schedule (~5 years)
 - Secure funding
 - Define and engage partners
 - Build up dedicated project team

∂ TRIUMF

Thank you Merci

www.triumf.ca

Follow us @TRIUMFLab

Discovery, accelerated