Investigation of the adiabaticity of longitudinal dynamics in the KURNS FFA

David Kelliher (RAL)

on behalf of the International KURNS collaboration

FFA'20 Workshop, TRIUMF (Nov 30th – Dec 4th, 2020)

Introduction

- Study the effect of varying the longitudinal parameters on the longitudinal distribution.
- We expect that if the transition is adiabatic the longitudinal emittance should be preserved.
- If the adiabaticity parameter, ε, is sufficiently low (~0.1), a distribution which is initially at equilibrium will remain in equilibrium.
- Questions to address
 - is the onset of emittance growth a threshold effect?
 - Can we establish an equation for emittance growth as a function of adiabaticity?

KURNS setup

Flexible RF – pattern generated by AWG.

Proposed Experiment

Aim: Experimentally measure the dependence of longitudinal emittance growth on the adiabatic parameter.

- Accelerate with usual settings until some point where beam has escaped foil and the emittance has reached an equilibrium.
- Ramp to zero phi_s over a range of turns. At the same time, ramp the voltage to preserve the bucket area.
 Note: the flat top energy varies with number of turns.
- Maintain flattop for many synchrotron oscillations.
- Use raw bunch monitor data or tomography to measure emittance blow up if any.

Specifying transition settings

Ramp phi_s from 20 deg to 0 in varying number of turns while adjusting the voltage to keep the bucket area constant.

Data summary

- Data taken before transition and at two later times in the flat top (about 50 and 100 synchrotron oscillations later).
- Triggers times of data acquisition: 6.162ms, 6.842ms, 9.542ms, 12.242ms
- 1 sets of data taken per condition taken on 9/12, 3 sets of 12/12.

Before transition

(filter applied, 9/12)

Transition

(filter applied, 9/12)

50 synchrotron oscillations later

(filter applied, 9/12)

100 synchrotron oscillations later

(filter applied, 9/12)

200 turn ramps

Mean FWHM of the bunch monitor signal

Tomography reconstruction – before transition

 $phi_s = 20 deg, V_rf = 4kV$

Tomography reconstruction – flat top 1

phi_s = 20 deg, V_rf = 2kV (based on gap voltage monitor)

Tomography reconstruction – flat top 2

phi_s = 20 deg, V_rf = 2kV (based on gap voltage monitor)

Tomography – rms emittance

Comparison with simulation

• Simulation used PyHEADTAIL. Start with equilibrium distribution in with approximately same bunch length as measured distribution.

Conclusions

- The flexibility of the RF waveform in FFAs make them an ideal tool to study longitudinal dynamics.
- More data and analysis needed to experimentally establish the relationship between adiabaticity and emittance growth.