Injection into a vFFA

C. Rogers

Science & Technology Facilities Council

FETS Ring

- FETS vFFA is designed as a demonstrator for high-power operation of a vFFA
 - Accelerate from 3 MeV to 12 MeV
 - Control of orbit and tune
 - Collimation and low loss operation
 - Bunch accumulation at high energy
 - Clean injection and extraction
- Seek to develop injection system similar to high power proton accelerators
 - H- stripping
 - Pulsed magnets to control beam on foil during injection
 - Painting of correlated and anti-correlated beams
- Use existing FETS line
 - Relatively large dp/p
 - Relatively large emittance

ence & Technology Facilities Council

Charge Exchange Injection + Painting

- Ion source generates Hydrogen atoms with an extra electron
 - "H-" ions
- Accelerate and inject H- on top of circulating proton beam
 - H- and protons pass through a dipole at different angles \rightarrow merge
 - Pass H- through a thin Carbon foil
 - H- are ionised leaving protons
- Painting the beam enables build up of different beam shapes
 - Inject H- at distance from the circulating proton beam core
 - Develop different beams e.g. "correlated" and "anti-correlated"
- Try to minimise protons passing through foil
- Eventually move beam off foil for acceleration

Phase space

- VFFA \rightarrow (x, x', y, y') are coupled
 - In general offset in one coordinate leads to an offset in all others
- Define decoupled (u, u') and (v, v') phase space
 - Related to (x, x', y, y') by a 4D rotation

Phase space

Proposed Injection System

Model

- Two models used
 - Linear optics model
 - Model scattering on foil as simple Gaussian
 - Mean energy loss according to Bethe-Bloch
 - Transport using fully coupled one-turn transfer matrix
 - No optical tune distortion
 - E.g. due to closed orbit distortion in FFA magnets
 - No space charge
 - Full tracking model (OPAL)
 - Estimate the bump magnet strengths
 - Estimate closed orbit distortion

Correlated Painting

- Aim of correlated painting study:
 - Determine requirement for beamline
 - Emittance, Twiss parameters
 - Determine effect of foil thickness
 - Is 20 µg/cm² okay?
 - Determine required bumper magnet settings
- Correlated painting
 - Steadily move the circulating protons away from the H-

 $A_u(n) = A_v(n) = nA_0$

- Amplitudes A_u and A_v
- n is turn number
- A₀ is constant
- Moving protons (as opposed to H-) reduces the number of foil hits

Phase space

Summary plots

Anticorrelated Painting

- Aim of anticorrelated painting study as per correlated painting
 - Determine requirement for beamline
 - Emittance, Twiss parameters
 - Determine effect of foil thickness
 - Is 20 µg/cm² okay?
 - Determine required bumper magnet settings
- Anticorrelated painting
 - Steadily move the circulating protons away from the H-

 $(N_0 - n) A_u(n) + nA_v(n) = A_0$

- n is turn number
- A_u and A_v are decoupled amplitudes
- N₀ is total number of injection turns
- A₀ is constant

Anticorrelated Painting

Anticorrelated Painting

- Optimisation to find the dipole fields for a few points
 - Use full tracking in OPAL
 - Iterate using Minuit MIGRAD routine
 - Yield the bumped proton closed orbit

Science & Technology Facilities Council

Required dipole settings

- Require dipole fields up to 0.3 T
 - 0.1 x 0.1 x 0.1 metre dipoles
 - Both horizontal and vertical bumpers
 - Fields perpendicular to, and parallel to, the beam pipe
- Change fields ~ 0.01 T per turn

Closed orbit distortion

- Rather large closed orbit distortion introduced
 - Foil has to beyond the edge of the unperturbed beam
- Concern that this may affect the tune
 - To be studied

Science & Technology Facilities Council

Magnet fringe fields

- Long fringe field
- Magnetic material in bumpers/septum
 - May perturb the field and ruin the scaling
- Tight injection bend required
 - May cause issues with injected H- beam
- Need to be careful in actual magnet design

Conclusions

- Presented design for painting in vFFA
- Correlated and anti-correlated painting concepts presented
- Bumper dipole requirements look reasonable
- Further study required
 - Closed orbit distortion
 - Effect of injection equipment on main magnet fringe fields
 - Tight bend near to the injection point

ience & Technology Facilities Council